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P. Marchal 

The popular explanations of why a wing produces lift typically involve some (often rather obscure) 

combination of “Bernoulli’s Theorem” and “Newton’s Third Law”.   These explanations  do not come 

close to correctly describing the physics of the phenomena. An explanation rooted in the physics of 

aerodynamics can unfortunately not be summarized in a few soundbites—the generation of lift is 

indeed a complicated story…  That does not mean, however, that a qualitative explanation based on 

sound principles cannot at least be attempted—that’s my goal in this note1.         

• Let’s first go through some definitions and assumptions. In the following, we’ll concern 

ourselves exclusively with two-dimensional (2-D) flows around airfoils (the shape of the cross-

section of a wing). All real flows are three-dimensional, of course—by two-dimensional, we 

mean a flow that does not change along the third dimension. If we think of an infinitely long 

wing, for example, the flow in any given cross section will be identical to the flow in any other 

cross-section--none of the flow characteristics (e.g., velocity, pressures) will depend on the 

position of the section along the span of the wing. In real-life, wings are of finite span, but the 

flow close to mid-span for a high aspect ratio wing will be a good approximation of a  2-D flow, 

and so will be the flow around a wing of finite span bounded by the vertical walls of a wind 

tunnel, which is how experimental airfoil characteristics are determined. These two-dimensional 

characteristics are the reference from which the properties of the flow around a wing of finite 

span are calculated.   

• We will consider the flow incompressible. This might not look like an obvious assumption in the 

case of air, but it can be shown that, as long as the Mach number (the ratio of air velocity to the 

speed of sound) is small--less than 0.4 is a generally accepted limit--air is for all practical 

purposes an incompressible fluid, and we can consider the density constant everywhere.  

• We’ll also assume that air is inviscid, that is, that it has no viscosity at all. This is an obvious 

simplification, but it has been confirmed experimentally that, as long as some conditions are 

met, it is a good first approximation in many cases. We’ll identify these conditions as we 

progress in our analysis, and will revisit the inviscid assumption as needed.   

• And finally, we’ll mostly consider steady-state flow—at any point in space, the fluid 

characteristics do not vary with time.      

Let’s start by investigating the actual flow of a fluid around a symmetrical airfoil immersed in a uniform 

flow, at zero angle of attack. By design, an airfoil is streamlined, that is, it is of such a shape that the fluid 

will closely follow its contour, without any flow separation. This is one of the conditions required for the 

validity of the inviscid assumption.  

 
1 Note to the reader familiar with aerodynamics—in an attempt to make this write-up as accessible as possible, I 
purposely stay away from the traditional concepts of conservation of vorticity, circulation, Kutta-Joukowski 
theorem, etc. I limit myself to the more familiar and intuitive concepts of pressure and velocity, sacrificing some 
rigor along the way.       



The picture below displays a flow visualization corresponding to that situation, obtained in a wind tunnel. 

The air flows from left to right, and smoke injected at regularly spaced intervals upstream of the airfoil 

allows us to observe the trajectories of fluid “particles” as they pass near the airfoil—the streamlines.   

 

In the absence of any obstacle, the streamlines would be equidistant horizontal lines. The presence of 

the airfoil forces the streamlines to part away shortly upstream of it, and they rejoin downstream. Far 

from the airfoil, the streamlines are mostly undisturbed from uniform flow, but close to it, they curve to 

follow the contour, and are noticeably squeezed together nearing the point of maximum thickness. 

From this simple picture, we can derive some useful physical insights about the flow. Let’s look at it in 

more detail. 

In the following 3-D view of a slice of with w of our wing of infinite span, we identify two neighboring 

streamlines. Each streamline in the 2-D section corresponds in three dimensions to a stream surface. 

 

Sandwiched between these two stream surfaces is what we’ll call a stream tube. Air that enters the 

stream tube at the upstream position 1 will forever be confined to it--for example, the fluid element 



colored in blue in the figure will travel down the stream tube, and after a certain time, will be found in 

location 2 (colored in red).   

So, we can form a mental picture of the flow around the airfoil as a “layer cake” of stream tubes stacked 

upon each other. We can dig deeper and look at the internals of a stream tube, i.e., we can apply 

Newton’s laws of motion to the red fluid element at position 2. We do just that (with some math—but 

we keep it to a minimum!) in Appendix A--the interested reader is encouraged to refer to it. The main 

conclusions are the following: 

• Rule 1. A stream tube will be curved only if the pressure on one side of the tube is greater than 

on the other side--the higher pressure “pushes down” on the stream tube and bends it towards 

the lower pressure.  The greater the pressure difference, the greater the curvature, and the 

higher the fluid velocity, the higher the pressure difference for the same radius of curvature.   At 

position 2, for example, the tubes are curved towards the airfoil. For each layer, the pressure 

“below” will be lower than the pressure “above”, and as a result we’ll see a decreasing pressure 

across layers if we approach the airfoil from above. To visualize this, we can imagine that, since 

the particle path is curved, centrifugal force tries to “pull” it away from the surface, creating a 

suction force acting on the surface.   

As a rule, pressure will always decrease when traversing layers towards the center of curvature 

and increase in the opposite direction.  

• Rule 2. The quantity  𝑝 +
1

2
𝜌𝑉2 is constant—Bernoulli’s Law! (p is the pressure, V the fluid 

velocity, ρ the density.) Given our assumptions, Bernoulli is just another name for Newton’s 

second law of motion. If the pressure at position 2 is less than at position 1, the velocity will be 

higher. 

In addition, we’ll note that the flow rate through a given stream tube is constant, independently of the 

streamwise location. That implies that, if the velocity at position 2 is higher than at position 1, the 

stream tube must be “thinner” at that position. This is Rule 3.  

Going back to our “layer cake” model, we can now build a qualitative picture of the flow around the 

airfoil. Since the airfoil is symmetrical and placed at zero angle of attack, the flow will also be 

symmetrical about the airfoil chord line. To simplify the reasoning, we’ll discuss the upper half only.  



 

Far upstream, all layers (a.k.a stream tubes) are parallel and of equal thickness (uniform flow), and the 

pressure is uniform and equal to the ambient pressure. Approaching the airfoil, the lower layers face an 

obstruction (the leading edge) and have to curve upwards, in the process forcing the upper layer 

upwards also. According to rule 1 above, this flow pattern corresponds to an area of pressure higher 

than ambient around the leading edge, where the layers are concave upward (the centrifugal force 

“pushes” fluid particles towards the leading edge, “pressing” on the surface). The highest pressure is on 

the contour of the airfoil, and decreases towards ambient moving away from the airfoil across the layers 

(along the arrow on the left for example). As the fluid moves downstream, following the contour of the 

airfoil, the layers turn concave downward and as a consequence, the pressure will decrease from 

ambient when moving towards the airfoil from far away, following the arrow on the right for instance 

(the centrifugal force “pulls” the particle away from the surface).  Thus we’ll observe an area of pressure 

lower than ambient on top of the airfoil. To this lower pressure corresponds a higher velocity (Bernoulli), 

and thus a thinning of the layers.  Moving further downstream, the curvature of the layers decreases, 

and even reverses in the vicinity of the trailing edge, where the streamlines return back to horizontal. 

The pressure on the airfoil will accordingly gradually increase as the flow progresses downstream, 

returning back to close to ambient (actually slightly positive) near the trailing edge. The increase in 

pressure results in a decrease in velocity and a thickening of the layers.     

Using only a few rules deriving directly from Newton’s law of motion, we were able to get a pretty good 

feel for the flow around the airfoil!  In summary: 

• The presence of the airfoil forces the streamlines to curve. 

• The curvature of the streamlines induces variation in the pressure in the vicinity of the airfoil—

higher than ambient around the leading edge, and lower on the top (and bottom) sections. 

• Variations in velocity and steam tubes thickness follow from the changes in pressure. 

If we want to get quantitative results (e.g., the actual pressure on the airfoil surface, so that we can 

calculate lift), things are getting more complicated, since we don’t know a priori the exact shape of the 

streamlines. And the shape of the streamlines determines the pressure, which determines the velocity, 

which changes both the pressure (the centrifugal force driving the pressure change varies with the 

square of the velocity) and the shape of the streamlines (by Rule 3)… Fortunately, there are 



computational methods (the mathematical underpinnings of which are beyond the scope of this note) 

that allow calculating the flow velocities that match exactly the rules previously discussed. Such a 

computer code was used to generate the pressure field displayed on the figure above (red areas 

pressure greater than ambient, blue for lesser than ambient—the deeper the color, the larger the 

difference). Experimental data acquired in wind tunnels show that the predicted pressure distribution 

on the surface of such an airfoil is pretty accurate—we have seemingly a good tool at hand.  

What happens to the flow as we increase the angle of attack to a small positive value—say 10 degrees? 

Once again, turning to flow visualization provides a qualitative understanding. The pattern on the top 

side of the airfoil is similar to the one for zero angle of attack, with a stronger curvature of the 

streamlines around the leading edge—the pressure on that side will be below ambient, more so than for 

a zero angle of attack. The flow pattern around the bottom part is different though—the curvature of 

the streamlines away from the airfoil, combined with “thicker” stream tube layers (which implies lower 

velocity than on the top side), point to a higher pressure than ambient over a large portion of the 

bottom of the airfoil. Lower pressure on top, and higher pressure on the bottom, combine to produce a 

net upward force—we have lift!  

 

 

 

However, if we run the computations with the new angle of attack, we obtain results that do not match 

the empirical data at all…   



 

The streamline pattern is markedly different, especially around the trailing edge, and more concerning 

even, the calculated lift is exactly zero! What went wrong? 

Brief historical note before answering this burning question. The problem we just encountered has been 

known since the middle of 18th century, when the French mathematician d’Alembert noted that, under 

the assumptions we made here, the total force applied by a fluid in motion on an immersed object will 

always be null—no drag, no lift… the so-called d’Alembert paradox2.  It is only in the early years of the 

twentieth century, with the development of boundary layer theory by Prandtl and the theory of lift by 

Kutta and Joukowsky, that theoretical aerodynamics reached a point where lift and drag were 

understood and useful predictions could be made. By that time, the Wright brothers had been flying for 

years (first powered flight in 1903). Good thing the practitioners didn’t wait for the theoreticians… 

Back to our calculated pattern of streamlines. The odd thing about it is that the streamlines curve 

sharply around the trailing edge, as shown if the zoomed-out figure below. 

 

We know intuitively that this is not reasonable—in real life, the flow will separate from the bottom of 

the airfoil at the trailing edge and will tend to proceed straight downstream. It can be shown that any 

fluid (like air) that has any viscosity, even a very small one, will separate at the trailing edge—ignoring 

 
2 This is not entirely correct--d’Alembert paradox strictly addresses drag only. It can be shown however that, in a 
lot of cases, there is no applied force at all--no lift, no drag.  



the effect of viscosity at that location is just not an acceptable assumption. This trailing edge separation 

impacts the flow around the airfoil—it acts like a “barrier” to the flow around the trailing edge, forcing 

the streamlines to rearrange themselves.  The dashed blue line represents a reasonable approximation 

of the boundary between the flow passing on top and bottom of the airfoil:    

 

In accordance with the “curvature rule,” the pressure above the separation boundary is higher than 

below (and thus, by Bernoulli, the velocity above is lower than below). This is not sustainable however—

the separation boundary is not a solid surface, it is just another streamline. Under the effect of the 

pressure differential, it will deform in the direction indicated by the arrows, until the pressure 

differential vanishes, ending in the configuration illustrated below. 3 

 

      

This pattern is now comparable with the one from flow visualization, with the streamlines from the 

upper and lower sides of the airfoil joining smoothly at the trailing edge. There’s no pressure differential 

across the trailing edge anymore, and so (by Bernoulli), the velocities of the flow from above and from 

below will be equal where they join. And there is no flow separation there anymore either. This pattern 

along the trailing edge is known in aerodynamics circles as the “Kutta condition.” Visually, the Kutta 

 
3 This is an over-simplified picture. The actual behavior is more complex, involving rotational motion, but results in 
the same final flow configuration.  



condition corresponds to a streamline pattern that follows smoothly the surface of the airfoil, from 

leading edge to trailing edge, and leaves the trailing edge tangentially to the camber line.  

Let’s now compare the flow and pressure patterns between the original calculation and the one meeting 

the Kutta condition, including this time a representation of the flow velocities as arrows, the length of 

which are proportional to the speed at the arrow origin. Two streamlines closest to the surface of the 

airfoil are highlighted for emphasis.  

         

Under the pure inviscid condition (a.k.a, “ideal fluid”, on the left), the streamline pattern is almost 

symmetrical with respect to the center of the airfoil—the curvature of the streamlines is such that areas 

of high pressure exist at the bottom of the leading edge, and top of the trailing edge, and areas of low 

pressure exist at the top of the leading edge and bottom of the trailing edge, balancing each other. 

Under the Kutta condition, on the other hand (on the right), an upwash upstream of  the leading edge, 

and a downwash downstream of the trailing edge, distort the symmetry of the flow and results in 

streamlines curvature such that the top side experiences lower pressure only (except for a small 

recovery zone near the trailing edge), and the bottom side experiences higher pressure over its entire 

length—producing net lift.  

We can acquire a deeper insight by looking at the difference between the flow velocities under the two 

regimes. The next figure displays the difference between the velocities under the Kutta condition and 

the ideal fluid regime (the velocity scale is increased compared to the previous figures). 

 

 

 



A striking pattern—meeting the Kutta condition is equivalent to superimposing a vortex-like flow to the 

original ideal fluid flow, a flow that reduces the velocity on the bottom of the airfoil (and thus increases 

the pressure, by Bernoulli), and increases the velocity at the top, reducing the pressure. It also shows 

the genesis of the upwash (the vortex flow displays upward velocity near the leading edge), and 

downwash (downward velocity near the trailing edge). Historically, recognizing the existence of this 

rotational flow has been central to the development of the theory of lift by Kutta and Joukowski.  

We were able to paint a qualitative picture of the flow around an airfoil at positive angle of attack, and 

explain the generation of lift. Let’s summarize. We’ll start from a symmetrical airfoil at rest, and start a 

forward motion 

• The air attempts to flow according to the rules of motion for inviscid fluid we discussed earlier. 

• This resulting pattern involves the air making a sharp turn around the trailing edge, which is not 

physically possible for a real, viscous fluid. 

 

 
 

• As a result, the flow along the bottom at the airfoil separates at the trailing edge, proceeding in 

a generally downstream direction.  

• The flow adjusts to this new configuration, resulting in a higher pressure just above the 

separation line than just below. 

• Under the effect of the pressure difference, the separation line curves downward until the Kutta 

condition is met: the flow from the top and bottom of the airfoil merge smoothly at the trailing 

edge, with equal velocities—no more flow separation. 

 

 
 



• The flow pattern that results from meeting the Kutta condition results in an increased pressure 

(and decreased velocity) along the bottom of the airfoil and a decreased pressure (and 

increased velocity) on top. The pressure difference results in lift.  

 

 

  



Additional Notes 

1. A popular theory of lift states that air particles must travel faster over the top of the airfoil to meet 

at the trailing edge the particles traveling at the bottom.  There is no physical reason for adjacent 

particles at the leading edge to meet at the trailing edge—it can actually be shown that a particles 

traveling at the top will arrive at the trailing edge ahead of the particle traveling at the bottom if the 

airfoil generates lift, as illustrated below.    

 

 
 

However, as we have seen, the vortex-like flow induced by the Kutta condition results in a 

decreased velocity along the bottom surface of the airfoil, and an increased velocity along the top 

(compared to the purely inviscid flow pattern, which generates no lift). By Bernoulli’s law, the 

pressure will thus be lower at the top, and higher at the bottom, producing lift. The Kutta condition 

is the reason for the velocity difference between the top and bottom of the airfoil, and thus the 

cause of lift. And the Kutta condition itself is a consequence of air having some viscosity. No viscosity 

means no drag, but it means no lift either!     

 

2. What about the case of an asymmetric airfoil? The following figure depicts the flow around an 

asymmetrical airfoil at zero angle of attack (a NACA 4415 airfoil, 4% camber with maximum camber 

at 40% chordwise). 

 

 

The geometry of the airfoil is such that the bottom is almost flat, while the top is more curved than 

the corresponding symmetric airfoil. Consequently, the streamlines (at zero angle of attack) will 



exhibit more curvature at the top than at the bottom. The curvature is such that both top and 

bottom surfaces see a lower pressure than ambient, but more so at the top (due to the higher 

curvature), and thus there will be a net lift generated. 

3. What’s the relationship between lift coefficient and angle of attack? The figure below displays the 

relationship between the predicted lift coefficient and angle of attack for the symmetrical airfoil 

(NACA 0015) and cambered one (NACA 4415). 

 

In the absence of flow separation (i.e., stall), the lift coefficient is a linear function of the angle of 

attack, with a slope slightly greater than 0.1 per degree. The slope is near identical for both airfoils, 

the main difference between them being that, as discussed above, the cambered airfoil exhibits a 

positive lift coefficient (0.5) at zero of attack.   

 

4. The Kutta condition arises from fluid viscosity, and determines a flow pattern that generates lift, but 

our analysis did not otherwise explicitly include viscosity. As a result, the calculated drag is still zero! 

Viscous effects are significant only in a thin layer around the airfoil surface (typically a fraction of an 

inch for a typical general aviation aircraft), the so-called “boundary layer.” An analysis of boundary 

layer flow is beyond the scope of this note, but it is the key to estimating airfoil drag, as well as the 

maximum lift coefficient that can be obtain before the occurrence of flow separation on the top of 

the airfoil—the stall. And while the exact shape of the airfoil is not a major determinant of lift 

(besides the effect of camber on the zero angle of attack lift coefficient), it plays a decisive  role in 

the development of the boundary layer, and thus on the drag and stall characteristic of an airfoil. 

Modern airfoil design techniques typically attempt to maximize the lift-over-drag ratio, subject to a 

number of application-specific constraints (e.g., stall characteristics, aircraft mission profile, 

structural and manufacturing considerations). 

      

5. Our analysis is based on the principle that the air follows closely the airfoil boundary. An obvious 

question is then—why is this true in the area of reduce pressure on the top surface of the airfoil? 
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Wouldn’t the air elements tend to “fly off” the surface under the effect of the centrifugal force?  The 

important thing to remember is that the pressure distributions we discussed are relative to the 

ambient (atmospheric) pressure. The numerical value of these pressure differences are small 

compared to the ambient pressure, and every part of the wing surface is subject to a large pressure 

directed into the surface, “pressing” the air onto it. 

 

To visualize this we’ll first display the pressure differentials around the airfoil as arrows pressing or 

pulling on the airfoil surface, using an arbitrary scale.   

 

 
 

          And then, here is the same diagram displaying the absolute pressure. 

 

 



The pressure differences are barely noticeable on this graph--the maximum negative pressure difference, 

near the leading edge, amounts just to 10 % of atmospheric pressure, and most of the wing surface is 

within less than 5% of it. But these small differences are enough to keep our airplanes in the air! 

 

  

   

 

       

  



Appendix A—A Deeper Dive 

Below we show a 3-D view of a slice of with w of a wing of infinite span, where we identify two 

neighboring streamlines. Each streamline in the 2-D view corresponds in three dimensions to a stream 

surface.  

 

Sandwiched between these two stream surfaces is a stream tube. Air that enters the stream tube at the 

upstream position 1 will forever be confined to it--for example, the fluid element (a.k.a “particle”) 

colored in blue in the figure will travel down the stream tube, and after a certain time, will be found in 

location 2 (colored in red).   

Let’s consider the red element at a specific time t, and apply to it Newton’s law of motion. To simplify 

the figures, we’ll look at the 2D side-view of the steam tube, remembering that that the width is 𝑤.  

Let’s first consider the laws of motion applied in a direction perpendicular to the stream tube. 

 

The steam tube is curved at the red particle location, with a radius of curvature R as indicated on the 

figure. The air particle flows with a velocity u from left (upstream) to right (downstream), and as a mass 

m. We’ll call the side of the stream tube towards the center of curvature the “inside” side, and the 



opposite side the “outside” side, and will denote pressure on the inside 𝑝𝑖𝑛 and the pressure on the 

outside 𝑝𝑜𝑢𝑡. Just like an airplane in a turn, by Newton’s second law if motion, the fluid element is 

subjected to a “centrifugal force” trying to pull it away from the center of curvature4. The value of that 

force is 
𝑚𝑢2

𝑅
 , it is proportional to the mass of the particle, the square of the velocity, and inversely 

proportional to radius of curvature.  Just like for an airplane in a turn, this centrifugal force must be 

opposed by a reaction in the opposite direction. In the case of the airplane, this is the horizontal 

component of lift resulting for the bank angle. In the case of our fluid element, it will be force exerted 

on its inner and outer sides by the fluid pressure. To balance the centrifugal force, the outside pressure 

must be greater than the inside pressure: 𝑝𝑜𝑢𝑡 >  𝑝𝑖𝑛, or equivalently, 𝑝𝑖𝑛 < 𝑝𝑜𝑢𝑡. At the location of 

the element under consideration, the pressure near the surface of the airfoil will be less than far away. 

We can visualize this by imagining that the particles in the stream tube, under the influence of the 

centrifugal source, are trying to “pull away” from the airfoil surface, creating a suction force—hence the 

deeper blue coloring near the airfoil surface (blue indicates a negative pressure relative to ambient 

pressure—the lesser the pressure, the more saturated the color).   

The opposite is true near the leading edge. In that area, the streamline curvature is in the opposite 

direction—the centrifugal force will tend to “push” fluid elements towards the leading edge, resulting in 

a higher pressure (hence the deeper red color near the leading edge, indicating a higher relative 

pressure).  

The general rule resulting from this discussion is that, whenever stream tubes, and thus whenever 

streamlines, are curved, there exists a pressure difference (technical term is a “pressure gradient”) in 

the direction perpendicular to the streamlines. The pressure always decreases when traveling towards 

the center of curvature, and increases when going away from the center of curvature. Where the 

streamlines are parallel, the pressure is constant across them. So, from the mere inspection of the 

streamline pattern, we can easily deduce qualitatively where the areas of higher and lower pressure 

relative to ambient will be (remembering that, far from the airfoil, the pressure is constant and equal to 

ambient pressure).   

 Let’s now consider the laws of motion applied along the length of the tube. 

 
4 Note to the purists--I apologize for introducing the “centrifugal force” here… The analysis should really be 
conducted in terms of centripetal acceleration and centripetal force. But I think the more intuitive concept of 
centrifugal force will make this section more accessible to most.     



 

We’ll call the height of the element a (the thickness of the tube at position 2), and its length b, where b 

is a taken as a very small length. The element is located at some distance s measured along the lower 

streamline. Pressure p- acting on the upstream face exerts a force 𝐹 = 𝑎𝑤𝑝− on the element, where 

a w is the surface area of the face. This force pushes the element in the downstream direction. Similarly, 

the pressure p+ acting on the downstream face exerts a force 𝑎𝑤𝑝+ that pushes the element towards 

the upstream direction. If p+ > p-, the net force 𝑎𝑤(𝑝− − 𝑝+) will push the element towards the 

upstream direction, opposing the direction of its motion, and thus slowing it down. So, qualitatively 

speaking, if the pressure increases along a stream tube, the fluid velocity u will decrease, and if the 

pressure decreases, the velocity will increase.  Let’s express that quantitatively (you can skip the 

derivation if you don’t like math!).  The next figure shows the same red fluid element after a short 

amount of time 𝑑𝑡 (the d in 𝑑𝑡 means “a small difference” in t). The dashed gray outline represents its 

previous position at time t. During the time interval dt, the element will have traveled a distance 

𝑑𝑠 =  𝑢 𝑑𝑡, and the new velocity will be 𝑢 +  𝑑𝑢. 

 

 

Applying Newton’s second law to the red fluid element, we write: 



Force  = mass * acceleration 

Where the net force, as calculated above, is 𝑎𝑤(𝑝− − 𝑝+), the mass is 𝜌𝑎𝑏𝑤 (ρ is air density), and the 

acceleration is  
𝑑𝑢

𝑑𝑡
=

𝑑𝑢

𝑑𝑠
𝑢⁄

= 𝑢
𝑑𝑢

𝑑𝑠
 . 

Putting everything together, we have 

𝑎𝑤(𝑝−  −  𝑝+) =  𝜌𝑎𝑏𝑤𝑢
𝑑𝑢

𝑑𝑠
 

If we assume the pressure is varying linearly with distance s along the streamline (which we can do if the 

length b of the element is small enough), we can write   

𝑝− − 𝑝+ = 𝑏
𝑑𝑝

𝑑𝑠
  

Replacing it in the equation gives 

𝑎𝑤𝑏
𝑑𝑝

𝑑𝑠
=  𝜌𝑎𝑏𝑤𝑢

𝑑𝑢

𝑑𝑠
 

And finally, simplifying all the common factors on the left and right, 

𝑑𝑝 =  𝜌𝑢 𝑑𝑢 

This tells us how a small pressure change will be related to a small change in velocity. But we’d like to 

know how pressure and velocity relate to ach other, independently of the size of the changes… That’s 

where calculus comes to the rescue. We can’t go into the details here—just let it be known that we can 

“integrate” the previous equation between two arbitrary position 1 and 2 along the streamline, and 

write 

∫ 𝑑𝑝 = 𝜌 ∫ 𝑢 𝑑𝑢
2

1

2

1

 

(∫ 𝑑𝑝
2

1
 means “take the sum of all dps between position 1 and 2”) 

And the rules of calculus tell us that this computes to 

𝑝2 − 𝑝1 =
1

2
𝜌(𝑢2

2 − 𝑢1
2) 

Or, rearranging the terms, 

𝑝1 +  
1

2
ρ𝑢1

2 =  𝑝2 +  
1

2
ρ𝑢2

2 



Or, since 1 and 2 are arbitrary positions, we can write that  𝑝 +  
1

2
𝜌𝑢2 is constant along a stream tube. 

And since far upstream the flow is uniform, with constant pressure and velocity everywhere, we have 

that  𝑝 + 
1

2
𝜌𝑢2 is constant everywhere—this is nothing else than Bernoulli’s law! 

So, by applying Newton’s law of motion to a small particle of air along a stream tube, we actually proved 

Bernoulli’s law. And, by combining Bernoulli’s law with the pressure gradient/streamline curvature 

relationship we discussed previously, based on a streamline pattern, we will also be able to identify the 

regions of higher and lower velocities.        

 

 

 

 


